PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY(—PCI')

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/13112
F 17/30 Al
GOGF 1773 (43) International Publication Date: 9 March 2000 (09.03.00)
(21) International Application Number: PCT/US99/19963 | (81) Designated States: AU, CA, European patent (AT, BE, CH,
CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL,
(22) International Filing Date: 31 August 1999 (31.08.99) PT, SE).
(30) Priority Data: Published
60/098,576 31 August 1998 (31.08.98) uUs Wiih international search report.

Before the expiration of the time limit for amending. the
claims and to be republished in the event of the receipt of
‘1 (71) Applicant: CABLETRON SYSTEMS, INC. [US/US}; 35 amendments.

Industrial Way, Rochester, NH 03867 (US).

(72) Inventors: GHANNAM, Jeff; 59 Alsun Drive, Hollis, NH
03049 (US). LOOMIS, Todd; 8 Juniper Ridge, Exeter,
NH 03833 (US). LEWIS, Lundy; 480 Greenville Road,
Mason, NH 03048 (US). DATTA, Utpal; 52 Pinecrest
Drive, Bedford, NH 03110 (US).

(74) Agent: HENDRICKS, Therese, A.; Wolf, Greenfield & Sacks,
. P.C., 600 Atlantic Avenue, Boston, MA 02210 (US).

(54) Titlee METHOD AND APPARATUS FOR MANAGING DATA FOR USE BY DATA APPLICATIONS

APPLICATION L ——202
203
DATA WAREHOUSE
X 1
DATAB . p— !
o DATABASE ACCESSOR 204
209 f 1 b
PUSH 7205 | polLing {206 |
DATA MANAGEMENT AGENT AGENT o
: J
REQUEST RESPONSE
21—y 212
'DATA . DATA
SOURCE ** | SOURCE
\ ’ .
2084 \2068

(57) Abstract

A system and method is provided for managing information. Information is aggregated from multiple data sources into a data
warchouse wherein the information can be provided to software applications. Disparate information from multiple sources is processed and
stored in the data warehouse. Processing may include filtering, collation, compression, and mapping information into database fields of the
warehouse. In one aspect, information stored in the warehouse may be network management data.

5¥%022002848%

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia

Austria

_Australia

Azerbaijan

Bosnia and Herzegovina
Barbados

Belgiom

Burkina Faso

Bulgaria

Benin

Central African Republic
Congo
Switzerland
Cbte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

- F}

FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
fid
KE
KG
KP

53

LK

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Fimland

France

Gabon

United Kingdom

- Georgia

Ghana

Guinea

Greece

Bungary

Ircland

Israel

Tceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea

. Kazakstan

Saint Lucia
Liechtenstein
Sri Lanka
Liberia

LS
LT
LU
LY
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
Sb
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

-The former Yugoslav

Republic of Macedonia
Mali
Mongolia
Mauritania
Malawi
Mexico
Niger
Netherlands
Norway
New Zealand
Poland

‘Portugal

Romania)
Russian Federation
Sudan

Sweden.

Singapore

J3333IRERE

=]
>

uG

Slovenia

Slovakia

Senegal .
Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

- Yugoslavia

Zimbabwe

20

25

WO 00/13112 PCT/US99/19963

METHOD AND APPARATUS FOR MANAGING DATA FOR USE BY
DATA APPLICATIONS

Related Application

This application claims the benefit under Title 35, U.S.C. §119(e) of co-pending U.S.
Provisional Application Serial No. 60/098,576, filed August 31, 1998, entitled “METHOD
AND APPARATUS FOR SUPPORTING DISTRIBUTED DATA APPLICATION” by Jeff
Ghannam, Todd Loomis, Lundy Lewis and Utpal Datta, the contents of which are

incorporated herein by reference.

Background of the Invention

Field of the Invention)

The present invention relates generally to management of information and, more

particularly, to management of data among distributed computer systems.

Related Art

Management applications for network, software and/or systems management have
become commonplace. Management applications are generally software applications that are
executed on standalone computer systems. These management systems provide information
regarding one or more entities, such as computers and network communication devices. In
particular, these systems gather information from the entities and present them to a network
administrator for analysis and interpretation. The network administrator in turn, provides
corrective actions, configuration changes, and the like to maintain and/or improve network

and systems performance. One example of a network management system is SPECTRUM

‘network management system available from Cabletron Systems, Inc. The WinWatch -

management application available from Metrix, S.A., is an example of a system that provides
management for end-user computer systems and servers. Syst_emé Management Server
(SMS) available from the Microsoft Corporation provides similar information for managing
software and -systems.

A recent trend is to manage higher-level entities such as business processes and

applications, whereby minimum service levels to users may be maintained. For example, a

10

20

WO 00/13112 l PCT/US99/19963

business process may depend on the performance of one or more other entities, such é;
another process, a networking device, computer system or other entity that affects the
business process: Similarly, an application may be managed wherein the state of the
application depends on the status of various software processes, hardware devices, and
communications between them. Due to the need for managing business processes and
applications, new software applications have been designed to manage them. For.example,
the NERVECENTER management system available frdm Seagate, Inc. is an example of a
business process management system. The PATROL management application available from
BMC Software provides application management functions. Other management systems are
available.

Drawbacks of the aforementioned management systems exist. For example. most
network management systems need large amounts of storage space on a standalone system.
Although the network management system (NMS) may be capab]e.of storing large amounts
of data, some data needs to be deleted after reaching a finite level of the standalone system.

Thus, long-term data storage is not available, and therefore features which require long-term

 storage, such as long-term trend analysis, is not possible on these standalone systems.

Also, many different management systems are needed to perform different

management tasks. For example, separate systems are generally required for systems and

network management. These systems generally collect different types of data, and do not
share data between the systems. Also, these separate systems are limited by the types of
information that they collect. For example, a network management system generally cannot
determine chargebacks to a user based on performance data of a computer system such as a
file server.

Data warehouses are a known solution for storing large amounts of data. Data _
Warehouses are generally accessed directly by consumers of its data, and the data is generally
loaded manually by database entry personnel. A data warchouse generally refers to an
extract of operational data for the purposes of efficient query-only processing. For example,

data warehouses are used for storing business-related data such as financial or production

information, wherein use of the warehouse facilitates improved decision making. A data

warehouse typical'ly contains a wide variety of data that presents a coherent picture of °
business conditions at a single point in time; and this picture is used for decision support.
One such data warehouse product is the ORACLE WAREHOUSE software system available

from the Oracle Corporation.

20

WO 00/13112 PCT/US99/19963

Similar to a data warehouse, a data mart helps one make informed business decisions.
Data marts typically contain highly-focused data specific to a department or individual line of
business, such as sales, marketing, or finance. Since data marts databases tend to be smaller

than that of a data warehouse (data marts are typically under 100 GB in size), data marts are

-easier to manage and implement.

“Summary of the Invention

According to the present invention, a system is provided for managing information
comprising a data manager that accepts data from a plurality of management systems and
processes and stores that data in a data warehouse. The data manager comprises an agent
configured to accept information from the plurality of systems and which maps the accepted
information into database fields of the data warehouse and a database accessor that stores the
accepted information in the data warehouse.

In accordance with one embodiment, the agent deletes duplicate data received from
more than one source. Also, at least one of the plurality of managemént systems is a network
management system. In one embodiment, the database accessor utilizes a standard database
interface to one or more proprietary data warchouses. In another aspect. the agent is a push

agent configured to push data to the database accessor at a specified interval. In another

‘aspect, the agent is a pulling agent configured to pull one or more systems for obtaining

management data and provides the management data to the database accessor. In another
aspect, the one or more systems are network management systems. In yet another aspect, the
network management systems store different types of management information in network
management databases.

In one aspect, the system can determine and control how much information is to be

stored in a local database. A filtering and scheduling interface allows users to decide what

types of information they wish to replicate to the data warehouse and how often.

In one .embodiment, a standard database interface is-provided to maintain independence from
the underlying proprietary database. In one aspect, the database interface is a CORBA

interface. In another embodiment of the invention, the data warehouse stores object-oriented

‘objects.

In another aspect, system is provided for management of network data. Network data

- is aggregated from multiple data sources into the data warehouse, wherein the data can be

provided to software applications. The system integrates disparate data sources into the data

10

20

25

30

WO 00/13112 PCT/US99/19963

warehouse by for example, performing data filtering, collation, compression, and mapping

‘the data into database fields of the data warehouse.

Advantageously, this system provides consolidated information to applications that
can perform high-level analysis. Because information is stored in the data warehouse and a

standard interface is provided to access the warehouse, a consistent, reusable set of services

for obtaining management data is available. In one aspect; the system is capable of tracking

trends and changes in network devices and sofiware models of the devices. For example, a
network accounting application can integrate usage data from different network managers
and devices and network probe information, allowing a user to see a consolidated graph or

billing statement. In one embodiment, the system cah trend business processes, showing over

‘time which processes have failed most often and what components have caused those

failures. Further, in yet another embodiment, the system can determine chargebacks for users
consuming network resources, such as bandwidth.

Further features and advantages of the present invention as well as the structure and
operation of various embodiments of the present invention are described in detail below with

reference to the accompanying drawings. In the drawings, like reference numerals indicate

' identical or functionally similar elements. Additionally, the lefi-most one or two digits of a

reference numeral identifies the drawing in which the reference numeral first appears.

Brief Description of the Drawings

Figure 1 is a block diagram of a computer system suitable for incorporating an
embodiment of the present invention; ‘

Figure 2 is a block diagram depicting a system incorporating an embodiment of the
present invention;

Figure 3 is a block diagram depicting another system incorporating an embodiment of
the present invention; |

Figure 4 is a block diagram depicting a layered view of a system providing
information to data users from one or more data providers in accordance with one
embodiment of the invention; _

Figure 5 is a block diagram of objects of a data management system in accordance
with one embodiment of the inventioﬁ;

Figure 6 is a block diagram of a data management system and an agent in accordance

with one embodiment of the invention;

20

WO 00/13112 PCT/US99/19963

Figure 7 is a block diagram of a data management system and an agent in accdf-élance
with one embodiment of the invention;

Figure 8 is a flow chart depicting the import of model data into a data warehousé;

Figure 9 is a representation of a graphical user interface for managing policies;

Figure 10 is a representation of a graphical user interface for listing information
regarding created policies;

Figure 11 is a representation of a graphical user interface for listing history
information regarding created policies;

Figure 12 is a representation of a graphical user interface for configuring network
monitoring; '

Figure 13 is a representation of a graphical user interface for configuring a network

accounting report; and

Figure 14 is a representation of a graphical user interface for configuring a network

link report.

Detailed Description

An exemplary network system wherein the data management system of the present
invention may be implemented 1s illustrated in Figure_l. The exemplary network system 100
includes a plurality of management systems 102A-B interconnected through network 104.
Network 104 may be, for example, a local area network (LLAN), metropolitan area network
(MAN), wide area network (WAN), etc., or other network used to communicate information
between systems. Network 104 may also include one or more managed entities 103A-B that
may be managed by management systems 102A-B, such as an end-user computer, network

server, router. switch, application, process or other manageable entity. Network 104 may

“contain any combination of management systems and managed entities.

An exemplary computer sysiem implementing the data management system of the
present invention is shown in Figure 1 as item 101. Computer system 101 may be a general
purpose computer system, which typically includes a processor 105 connected to a memory
system 106 via an interconnection mechanism suéh as a computer bus 111. Input/output
(I/0) devices 107, 108 such as disk controllers, graphics cards, or the like may be included in
computer system 101. The computer is capable of executing an operating syétem and is

generally programmable by using a high level computer programming. language such as the

C++ programming language.

20

25

30

WO 00/13112 PCT/US99/19963

‘Computer system 101 includes a software program stored in memory system 103
which causes the processor to perform operations of data management system 210. As will
be described in more detail below, data management system 210 receives information from
one or more data sources, processes the information according to policies, and stores the
information in a data warehouse. The data warehouse can be accessed by applications that
perform analysis with the data.

The general purpose computer system 101 preferably includes a commercially
available processor 105, such as the Celeron, Pentium, Pentium II or Pentium 11
microprocessor from Intel Corporation, PowerPC microprocessor, SPARC processor, PA-
RISC processor or 68000 Series microprocessor from Motorola. Many other processors are
also available. Suoh a orocessor generally includes an operating system which may be, for
example, DOS, Windowﬁ. 95, Windows 98, Windows NT, or Windows 2000 operating
systems from the Microsoft Corporation, the System 7.X operating systems from Apple
Computer. the Solaris operating system from Sun Microsystems, the Unix operating system
and its variants available from many vendors including Sun Microsystems, Inc., Hewlett
Packard, Red Hat Computing and AT&T, or the NetWare operating system available from
Novell, Inc.

The operating system controls the execution of other computer programs and provides
scheduling, debugging, input/output control, accounting, computation, storage assignment,
data management, memory management, communication control and related services.
Processor 105 and an operating system define a compoter piatform for which application
programs and high-level programming languages are written. Management system 102 may
be any type of computer system as described above, witﬁ a network interface card (NIC) or
other communication device installed to communicate over network 104. |

The operating system interfaces with firmware and hardware of system 101 in a well-
known manner to access 1/O devices 107, 108 and memory system 106. Memory system 106
may be any commonly available random-access memory (RAM) or read-only memory
(ROM), a hard drive, CD ROM, tape system, or the like used to store and/or retrieve data.

The data management system 210 of the present invention is preferably implemented
in C++, however, it may be implemented in any other well-khown software language. For
example, the data management system 210 may be implemented in interpreted object-
orientated programmiﬁg language, such as JAYA, ActiveX, or SmallTalk. System 210 may

also be configured to execute within a browser application, such as the Netscape Navigator

20

25

30

WO 00/13112 ' PCT/US99A9963 ..
browser available from Netscape, Inc. or the Microsoft Internet Explorer browser available
from Microsoft. Alternatively, data management system 210 may operate as a computer
implemented process accessible through a browser interface. Furthermore, data management
system 210 is capable of residing on any well-known computing platform.

Software techniques for performing data management functions in accordance with
the present invention typically reside in memory 106 and may be stored on a computer-
readable medium such as, for example, magnetic disk, compact disk, magnetic tape, or
optical media. A software embodiment of the present invention may be, for example, loaded
into computer system 101 using an appropriate peripheral device as known in the art.
Alternatively, software implementing another embodiment of the present invention may be
stored, for example, on a server located in network 104, and installed or executed over
network 104. It should be understood, however, that the present invention is not limited to a
particular computer platform, particular operating system, or particular processor. The
exemplary environments identified above are given by way of example only; the invention
may be implemented in a .vari'ety of computer systems having a variety of system
architectures.

Fig. 2 shows a block diagram depicting a system in accordance with one embodiment
of the present invention. Database management system 210 receives information from one or
more data sources 207A-B, 208A-B and stores the information in a data warehouse 203,
whereby software applications 202 may access and perform analysis on the stored data, and
provide analysis results to a user.

Data management system 210 may include a database accessor 204 which provides an
interface to the data warehouse for managing and storing information in the data warehouse
203. Database accessor 204 méy use one Or more database policies 209 to determine when
information is to be sent to the data warehouse 203. Database policy 209 may also specify a
source of the data and the frequency by which data should be obtained from the data source.

System 210 also includes agents 205,206 which provide'th'e‘ ability to interface to
other systems, extract data from them, and map the data into the data warehouse 203. A push
agent 205 is used to push unsolicited data from data sources 207A and 207B into warehouse

203. Data which can be pushed includes information types that are regularly stored in the:

.data warehouse at regular intervals. For example, a network management station may, after a

‘two week period, push data collected that is more than two weeks old to database accessor

204. Push agent 205 may reside on a computer system that includes management system

10

15

20

30

WO 00/13112 PCT/US99/19963

210, or the push agent 205 may be located on a computer system such as a network management
system. According to one embodiment, the push agent 205 has access to a management system
database located on the network management system, and provides information from that
database to database accessor 204 for storage in data warehouse 203. -

In contrast, system 210 may include a polling agent 206 which performs requests 211 to
data sources 208A-B and receives responses 212. Agent 206 may be used to obtain data from
sources at specified intervals. By contrast, an external system controls the loading of data into
the warehouse using push agents. Polling agent 206 may include a polling manager which allows
for scheduling and configuring of polling requests. Polling may be performed according to
database policies 209 which may include as parameters system locations, types and frequencies
of the data that is obtained. It should be understood that system 210 may perform any method for
obtaining data, such as polling, receiving pushed data, or any other method.

Data warehouse 203 may be, for example, a commercially available data warehouse
product, such as ORACLE WAREHOUSE available from the Oracle Corporation. Data
warehouse products from other companies including Microsoft, Sybase, and Informix and others
may also be used. Other types of data warehouses may be used. Alternatively, a distributed data
warehouse or data marts may be used to store and serve data.

Data sources may be, for example, management servers, network entities or any other
source of management data. The term “data” and “information” are used synonymously in this
application, and can be used interchangeably. Figure 3 shows a block diagram of a system
wherein multiple management systems 301-304 transmit data to data management system 210.
Data may be transmitted through a communications network such as a LAN, or through any
method available. Ifa management system is located on the same computer system as system
210, data may be transferred through common file structures, interprocess communication, or by
any manner available.

‘ Managémcnt systems 301-304 may be the same type of management system, such as a
network management system, or they may be different. Management systems 301-104 may store
similar or dissimilar types of data. Management systems 301-304 obtain information from
network entities 305A-], either by polling or receiving pushed data. Such information may

include configuration data, performance data, or any data which is relevant to the operation and
control of the network entity 305.

RECTIFIED SHEET (RULE 91)
ISA/EP

20

25

WO 00/13112 PCT/US99/19963

For example, a network entity 305A may be a router, and management system 3"0;]
may be, for example, a SpectroSERVER network management system available from
Cabletron Systems, Inc., Rochester, New Hampshire, USA. Router 305A may send
unsolicited messages, commonly referred to as traps, to' management system 301, the traps
indicating an operational state of network entity 305A. Further, management system 301
may obtain information from router 305A by polling the device through a network
management protocol, such as SNMP (simple network management protocol). Received
information may be stored by system 210 in data warehouse 203. It should be understood
that any method for communicating information may be used.

Data management system 210 may perform processing on received data including
filtering, collating, compression,_and mapping data into database fields of the data warehouse
203. For example, when a trap is received by a management system of a network entity. and -
is passed on to an agent 205, 206, some of the data fields of the trap may not be needed by
application 202. Therefore, unnecessary data may be deleted. Further. management systems
301-304 may not be the same type of management system, and therefore data formats
represented in the management systems 301-304 'may need to be mapped to a common
database format by the database accessor 204. Further, data received from data sources may
be compressed by the database accessor 204 prior to storing the data in data warehouse 203
such that database space is conserved.

More than one management system may also collect information about a particular

network entity. For example, management systems 303 and 304 may both collect the same or

-overlapping information from network entity 305G. Data management system 210 may

delete redundant information before storing it in the data warehouse 203.

Information that is stored in the data warehouse may include event or trap
information, topology data, configuration data, network object data, performance data or any
other data regarding computer systems management. For example, the data sources may
include management systems such as the SpectroSERVER available from Cabletron Systems,
Inc., which manages LANs, WANs, SNA networks, and other types of networks. Another
data source may include the SPECTRUM SecureFast Flow Admission Server (FAS) and
SecureFast VLAN manager which are Cabletron management systems that manage
Cabletron’s SecureFast packet switches and cell switch networks. Further, another data
source may include Cabletron’s SecureFast Virtual Remote Access management system

(SFVRA) which provides information regarding remote access of users to a network.

WO 00/13112 PCT/US99/19963

Further, other sources including BMC PATROL, Metric WinWatch, and Microsoft SM§
discussed above may be sources or users of data. Also, telecommunications management
networks (TMN) and their communication devices may also provide data to be stored in data
warehouse 203. It should be understood that many different sources of data may be used. and
this list is not exhaustive or limiting.

Access to the data warehouse 203 may be provided through standard database
interfaces such as SQL, ODBC, and CORBA interfaces. Data warehouse 203 may be

.thought of as a single physical database, or a single virtual database comprising individual

physical databases distributed geographically throughout network 104. Because data is
stored in a single repository, it is now possible for applications 202 to access a larger set of
data types than previously possible. For example, a networking accounting application can
combine usage data from SPECTRUM, SecureFast FAS, SecureFast VRA and RMON
network management systems. This capability allows the user to see usage for multiple
network media types including traditional LAN. virtual LAN, ATM and remote access.
Conventionally, an analysis of this type would require four views, or worse yet, four different
applications to obtain. information from the four different management systems. Unlike
conventional systems, ménagement system 210 provides a single source of information_in
data warehouse 203.

Figure 4 depicts a layered view of a system providing information to data users from
one or more data providers in accordance with one embodiment of the invention. In this
embodiment, each layer has specific responsibilities and may be constructed using object-
oriented programming. Data user 402 is a consumer of data produced by data provider 410.
Data provider 410 may include one or more agents such as a pull or push agent discussed
above with reference to Figures 2-and 3. Data providers 410 may provide statistical, event,
model, and call record data. Data provider 410 may provide other types of data. Data user
402 may be, for example, ban application 202 such as a capacity planning, billing, accounting
application, or the like.

Interface layers 403 and 409 provide an external interface to data users 402 and
providers 410, respectively. Interface layers 403,409 include, in an object-oriented
environment, interface objects. An interface object represents an encapsulation of business
concepts not specific to a particular applicatioﬁ.‘ For example, data management system 210
provides interface objects for statistics, topology, and call records data, but, according to one

embodiment, interface objects are not based on applications 202. By abstracting objects

10

15

25

WO 00/13112 PCT/US99/19963

based on business concepts, the complexity of system 210 is reduced. For example, a‘rﬁ.éthod
which obtains call records could be used for both capacity planning and a billing application.

In one embodiment, interface objects manage the creaﬁon and deletion of business .
objects which encapsulate business rules for a given topic into a class structure. For example,
a business object called “topology” contains business rules for obtaining topology data from
the data warehouse 203, to include the structure of the data in the database, any error
checking of the data, and any data dependency checking. Further, interface objects may map
client application requests to an appropriate business object within business object layers 404, .
408 that will perform the service. Also, interface objects may perform error recovery
functions in the event that a client’s communication disconnects due to error. or catch
exceptions “thrown” or generated by business objects and provide handling of exceptions and
status messages to the calling client objects. In general, client interface objects provide

transaction management for each service they provide. If an exception occurs during the

- processing of a service, the interface object will ensure changes are rolled back prior to

passing the exception to the calling client object. Interface objects may also utilize a security
object to provide transaction-level security.

Business object layers 404,408 may include two types of business objects, one which
extracts data from the data warehouse and provides it to client applications, and another for
exporting data. Business objects rhay be C++ objects which do not need interface object
functionality for communicating with data users and data providers.

Business objects extract data from the data warehouse. and include functional
components which support different applications 202. For example, business objects may

include objects providing statistical, landscape, and call record data in support of capacity

" planning and billing and accounting applications. Higher levels of business objects such as a

decision support object may in turn rely on capacity planning-and accounting information.
Which-are subsequently reliant on underlying statistical, landscape and call record data.
Statistical objects may provide the ability of client programs to obtain various sets of
data associated with performance statistics associated with a customer or model. For
example, a statistics object may contain a method which, when invoked, obtains attributes
and values for a given time period for one or more models. Further, statistical objects may
obtain statistics for a given customer or user. ' -
Landscape objects may provide the ability for applications 202 to obtain information

about a network domain and its entities. For example, methods in a landscape object may

1"

10

15

20

WO 00/13112 PCT/US99/19963

allow an application 202 to obtain all of the model types in a given category. Further, ﬂ?é
object may support obtaining basic information for all landscapes in the data warehouse,
which contain one or more model categories. A landscape object method may obtain data
that allows a graphical rendering of a network topology of one or more domains. Also, a
landscape object rhay support retrieving basic information on models within a landscape in
the data warehouse.

Call record data objects may provide the ability to provide call record data for a given
customer.. It should be understood that other object types could be used, and system 210 is
not limited to the objects described above.

Business objects may use standard C++ exception handling to handle exceptions, and
may have the capability of catching exceptions that they are capable of handling, or aliow the
exception to be propagated to interface objects. In one embodiment, interface objects pass
exceptions to client applications 202 using Corba exception handling, which is well-known.

Database.access layers 405, 407 contain object-oriented class structures which. in one
embodiment, provide a vendor-independent database interface to business objects. Database
access objects provide connection management functions such as connection and
disconnection from data warehouse 203, which is represented by a physical database 406.

Physical database 406 as discussed above, may be a commercially available database such as

the ORACLE WAREHOUSE software system implemented as software executing on a

computer system. Database access layers may by implemented by a commercially-available

programming product such as Pro-C or Oracle Call Interface (OCI) available from the Oracle

Corporation. It should be understood that other database interfaces may be used to allow

business objects to access data in data warehouse 203. In sum, the database access objects:

~ provide a wrapping function between a business object and a conventional interface of the

data warehouse 203.

7 Such functions may include the vs’et attributes, set tables, set clauses, submit query, and
submit proceduré functions as shown in Figure 5. ‘Thg database access objects 501 map
requests from business objects 502 into database actions to be performed on the data
warehouse 203. The set atiributes function 503 set attributes for a particular database table.
The set tables function 504 allows a user or process to specify a table upon which operations
can be performed . The set clauses function 505 allows a user or process to create a search

clause which specifies a search query. The submit query function 506 allows a user or

12

15

20

25

30

WO 00713112 PCT/US99/19963

process 10 submit a database query. The submit procedure function 507 allows a user of;
process to submit a query for batch processing.

As discussed above with reference to Figures 2 and 3, a number of agents provide the
ability to interface with other systems. As shown in Figure 6, there may be agents which are
suited for the data which they collect, or suited to the management system from which they
obtain data. Data management system 210 may include a VLAN agent 602 which is an
example of a push agent. Model agent 610 and Statistics and Event agent 607 are examples
of polling agehts. VLAN agent 602 is responsible for storing VLAN call record data in data
warehouse 203. VLAN agent 602 provides an interface object 603 which provides methods
for placing data in data warehouse 203. The VLAN agent calls methods on one or more
database access objects 601 to store data in data warehouse 203. |

Statistics and Events agent 607 is responsible for reading statistics and events data
from a management system such as Cabletron’s SpectroSERVER network management
system. Polling agent 206B will collect data from the management system specified by
database policies 209. Agent 206B will perform data mapping, reduction and collation
operations, and call methods of a database access objects 601 to store data in warehouse 203.
Dispatcher/co]lator 609 will control access to data on the network management system.

Model agent 610 is responsible for reading landscape and topology data from a
network manager such as a SpeétroSERVER network management system. In the case of
accessing a SpectroSERVER, the model agent may use the well-known Spectrum AP
(SAPI) to access each SpectroSERVER. The model agent 610 collects data from the
SpectroSERVER for a time period speciﬁed in the database policies 209. and calls methods
of database access objects to store data in warehbuse 203. In one embodiment, agents 610
and 607 reside on a SpectroSERVER management system. Further, communication with
agents 610, 607 may be performed through CORBA interfaces 606 called through interface
objects 604, 605, respectively.

Figure 7 shows one embodiment of a system using management systems from
Cabletron Systems. In this embodiment, data management system 701 obtains information

from data sources Spectrum SpectroSERVER 704, VLAN Manager 705, and RMON 11

network probe 706 systems. System 701 stores the information in a data warehouse 203

which is located on a data warehouse server 730 in network 104 (shown by arrow at right
side of Figure 7, with regard to network 104 of Figure 1). System 701 utilizes database

objects 707 to store information. These objects 707 may be, for example provided as client

13

20

WO 00/13112 PCT/US99/19963

software such as the Software Data Warehouse (SDW) client, available from Oracle, of;
Structured Query Language (SQL) client available from Microsoft. It should be understood
that any method for accessing data warehouse 730 may be used. As discussed above. data
warehouse 203 may be an Oracle or Microsoft data warehouse product. Operation of various
components will be discussed more specifically below in reference to pseudocode according
to various embodiments. System 701 includes SSAPI agent 720 which collects object data
from SpectroSERVER 704 and VLAN Manager 705 using the SSAPI programming
interface. 1ACS agent 721 collects events and statistics data from both SpectroSERVER 704
and VLAN Manager 705 systems. In addition, Topology Agent. 722 collects information
pertinent to detérmining topology from systems 704, 705. System 701 may also include an
RMON 1 Agent 723 for collecting remote monitoring data from one or more RMON probes
706. Purge Agent 724 may be a process which periodically purges data from one or more

databases. Agents 720-724 may be processes spawned in memory of a computer system by

- ImportService 718 which controls importing of data into data warehouse 203. ImportService

718 imports data based on policies which are managed by PolicySched 717. PolicySched
717 reviews stored bolicies and triggers the collection of data by agents 720-724. Data
management system 701 also includes a scripting service such as Perl5 714 to issue command
line seripts discussed in more detail below with respect to import of data. Further, system
701 includes CORBIA osagent 725 and CORBA oad 726 which facilitate CORBA
communications between system 701 and other CORBA-enabled systems as is known in the
art. |

Information and configuration of system 701 is presented to a network user through a
web browser 708 of web browser system 702. Web browser 708 may access a data server

TA Data Server on a web server system 703 which controls access to data warehouse data

through loService 715. Information may be served to web browser 708 by web server 709 in

a standard manner using the well-known HTTP communication protocol. Inone
embodiment, object data may be communicated using CORBA. Web server system‘703 also
includes a CORBA osagent 710 and scripting service Perl5 (713) to facilitate displaying data
and the executing functions.

Figure 8 is a flow chart depicting the overall process 800 for importing data into data
warehouse 203. At step 801, process 800 begins. At step 802, data management system 210
verifies database information, such as a database version and layout of the database described

by a database schema. At step 803, system 210 spawns an agent process to collect

14

20

25

30

WO 00/13112 PCT/US99/19963

information from data sources 207-208 according to database policies 209 (see Figure fi‘
Database policies may be stored local to system 210 as well as in déta warehouse 203. At
step. 804, system 210 constructs a list of policies to be executed on one or more data sources
207-208. At step 805, system 210 queries a database of data sources for data source
information. This database of data sources may be stored in data warehouse 203 or in

memory of system 210. Data warehouse 203 may be maintained by a data warehouse server

- system 730. System 210 queries the database for policies specified by the list of policies at

step 806. At step 807, system 210 creates a final list of database policies to be executed by
merging a local list of policies with that stored in database 203. At step 808, the database
policies are executed by one or more agenfs 205, 206, and information is collected from data
sources 207-208. At step 809, process 800 ends.

The following sections which refer to Figure 7 describe example imports of various

types of management data in accordance with several embodiments of the invention:

1. Overall Models Import Flow (SSAPIAgent)

-A. Data management system 701 performs software/schema version check by:
I. Connecting to the data warehouse 203 through database access objects 707.
11. Issuing a query to the data warehouse 203 database to retrieve the séhema
version.
HI. Disconnecting from the data warehouse database 730.
B. SSAP] Agent 720 is started with a list of policy IDs that are models imports to
' .complete.

C. A detailed list of the policies to be executed is constructed.

D. Aqueryis issued to the database (cs_agent_name) of data warehouse 203 to retrieve
export_typé (the type of data sburce), agent_name (the machine name of the data
source), and exec_constraint (the constraints for querying the data source). '

E. A .qu_ery is issued to a database of pdlicy (cs_export_policy) to retrieve the list of
policies specified on the command line. -

F. The tables are joined intemally to create a final detailed list of policies to be executed.

G. Each of the policies are executed in an order, such as in serial order.

1 An update is issued to the database of policies (cs_export_policy) to set the

status field of the import to "ranning"”. -

15

15

20

25

30

WO 00/13112

IL

M1

Iv.

VI.

PCT/US99/19963

SSAPI agent 720 connects and sends a log message to loService 715
indicating that the import has started.

a. loService 715 performs a single insert into cs_log_message to save the

log message.

An update is issued to the database (cs_export_policy) to set the start_time of
the import to the current time.
A list of subimports is constructed (relation, model, model. type, attribute,
association) corresponding to subgroups of information to be stored in

warehouse 203.

. Each of the subimports is executed serially

a. If an error occurs during a subimport, no further subimports are done
for this policy. '
An update is issued to the database (cs_export_policy) 10 set the end_time of

the import to the current time.

VII. An update is issued to the database (cs_export_policy) to set the status field

of the import to "sleeping”.

VHI. The agent 720 connects and sends a log message to loService 715 indicating

that the import has completed.

a. loService 715 performs a single insert into cs_log_message.

G. Once all policies have been executed:

L.

IL

If any new models were imported OR active models changed 1P, MAC, OR

name OR models were terminated then:

a. Execute a stored procedure called CS_SCHEMA_STATS to

reoptimize the schema for queries.

b. Run a script called load_dim.sql to rebuild/update tables storing
information regarding links and attributes of the network entities:
cs_attribute_dimension, cs _generic_attribute, cs_attr_genattr_link,.

cs_mt_category_link, cs_model_dimension, cs_category genattr_link.

If any new associations have been imported OR any old associations were

terminated then

16

10

20

25

‘30

WO 00/13112 PCT/US99/19963

a. Execute a stored procedure called CS_SDW_UPDTOPO to update tfm;e
cé_topology table.

2. Relations Import Flow

A.
B.

F.
G.
H.

Connects to SpectroSERVER 704 using synchronous SSAPI.

Retrieves a mapping called VL Map from the SpectroSERVER 704 to obtain the
landscape handle of the server which is used to uniquely identify the landscape.
Connects to the database 203 and retrieves a list of relations between network entities
from the cs_relation table.

Retrieves a list of relations in SpectroSERVER 704 via an SSAPI call.

Compares the list of relations from SpectroSERVER 704 to the list of relations from
the database 203, making a list of all new relations.

Inserts all new relations into cs_relation using a database insert statemént.
Disconnects from the SpectroSERVER 704.

Disconnects from the database 203.

3. Mbdel Import Flow

A
B.

O

Connects to the SpectroSERVER 704 using synchronous SSAPI.
Retrieves the VL Map from the SpectroSERVER 704 to obtain the landscape handle

of the server.

Connects to database 203 and truncates cs_temp_model.

Retrieves a list of all models that represent network entities in the network from the
SpectroSERVER via an SSAPI call
Loops through the list of models
1. Issues a SSAPI query for IP address, MAC address, and model creation time
of th'e current model
I1. If the model is a VLAN model of type VLANLink then:
a. Issue a SSAPI query fdr the model address (or the model name)
otherwise the model name in the model description is used.
I11. Adds the information about this model to a list.
IV. If the list of model information is greater than 1000 models long then:
a. Insert the current list of models into cs_temp_model

b. Empty the current list of models

17

WO 00/13112 PCT/US99/19963

F. Perform a final insert into the cs_temp_model table to write the remaining records

into the database.
G. Lock the cs_model table to prevent updates by other agents.

H. In a query, terminate all models in cs: model that are not in cs_temp_model.

]

In a query, for all active models in cs_model, update the model name. IP address. and
MAC address if they have changed between the prior import and the current one.

In a query, add all new models to the cs_model table.

Commit the three transactions H, I, and J above, unlocking the cs_model table.

Bind stored procedures to prepare for use.

. Retrieve alist of all models in the SpectroSERVER via on SSAPI call.

z 2 &R =

Loop through the list of models
1. Retrieve a list of all logged attributes for the current model via an SSAPI call.
11. Attempt to look up the SDW model handle by the following algorithm:

if (spectrum_model_handle = last one encountered)

{

model_handle = last one determined;

}

else

{

SDW DATABASE: lock CS_Model to all other updates;
SDW DATABASE: search for CS_Model entry with given Spectrum
model handle,
either active, or inactive with time_stamp within model start/end times

if (Spectrum model matches an inactive entry in SDW)

{

model is inactive - model:_handle = existing SDW model key

} .
else -- Spectrum model not found in SDW, or an active match is found
{

'SPECTRUM: get model data from SpectroSERVER via a SSAPI call;
if (model is in SDW and is active)

|
if (model is not in SPECTRUM or

WO 00/13112 PCT/US99/19963

(model is in SPECTRUM but differs from that in SDW,
i.e. different model type or creation time))
{
SDW DATABASE: deactivate model in SDW
(i.e. update end_time_key = now);
} .
}
if (no active model in SDW and present in SPECTRUM)
{
SDW DATABASE: create model in SDW
(i.e. insert new CS_Model row with new SDW model key
and info just read via SSAPI);
model_handle = newly created SDW model key;
H
}
SDW DATABASE: unlock CS_Model;
}

~ return model_handle;

I11. For each logged attribute ID defined for the current model, add the model

handle, attribute ID, polling interval and logging interval to a list

IV. If the list is has greater than or equal to 1000 entries in it, then
a. Insert the records into the cs_model_attribute table in one insert
b. Empty out the current list

O. Insert the remaining records into the cs_model_attribute table

“P. Disconnect from the SpectroSERVER 704,

4. Model Type 'Import_ Flow
A. Connect to the SpectroServer using synchronous SSAPI
B. Retrieve the VL Map from SpectroSERVER 704 to obtain the landscape handle of the
server
C. Connect to the data warehouse database.
D. .Retn'eve a list of all model types from SpectroSERVER 704..

E. Retrieve a list of all model types from the database 203 via a database query.

19

15

20

25

30

WO 00/13112 PCT/US99/19963

F. Loop through the list of model types obtained from SpectroSERVER 704.

I. If the current model type is instantiable then

a. If the model type is not in the database then add it to a list

G. If there are any new model types then

1. Insert all the new model types into cs_mo.del_type in one insert

II. Execute the Extended Attribute Import on all new model types

I11. Execute the Attribute Import on all new model types
H. Disconnects from the SpectroSERVER 704.

5. Attribute Import Flow

A. Connect to the SpectroSERVER using synchronous SSAPI.

B. Retrieve the VL Map from the SpectroSERVER 704 to obtain the landscape handle of
the server. |

Connect to the data warehouse database.

Retﬁeve a list of all attributes from the database and places them in a hash table.
Create a temporary table for Extended Attribute information.

Retrieve a list of all model types from SpectroSERVER 704.

o mmo o0

Loop through list of model types from SpectroSERVER 704.
1. If the current model type is instantiable then '
a. Retrieve the list of attributes for the current model type from the
SpectroSERVER. |
b. Loop through the list of attributes
i. Adds current attribute to unused table of attributes
ii. If the current attribute is a new atiribute, then
1. Adds the current attribute to a list of new attributes
2. Adds the model type to a list of model types-to perform
an extended attribute import on '
iii. If there are greater than or equal to 1000 new attributes then
1. Insert the attributes into the database in one insert
2. Empties out the new attribute list
" H. Insert the remaining new attributes into the database in one insert
I. Insert the remaining updated attributes into the database in one insert

J. Insert the remaining extended attributes into the database in one insert

20

10

20

25

30

WO 00/13112 PCT/US99/19963

K. Execute the Extended Attribute Import on all the model types that had newly éa:]ed

attributes.

L. Disconnect from the SpectroSERVER 704.
6. Extended Attribute Import

A. Connect to the data warehouse database 203.

B. Loop through the list of model types/attribute ID pairs on which to perform an
extended attribute import
. Request the attributes on the current model type
1. Loop through the list of attributes
a. If this attribute is the one from the model type/attribute ID pair then
i. Add the attribute to a list
b. If the list of attributes is greater than or equal to 1000 then
i. Insert all the extended attributes into cs_mt_attr_link in one
insert
it. Empty out the extended attribute list

C. Insert the remaining extended attributes into cs_mt_attr_link in a database insert.

7. Association Import Flow

A. Connect to the SpectroSERVER 704 using synchronous SSAPI. A
B. Retrieve the VL Map from the SpectroServer to obtain the landscape handle of the

S€rver.

a

Connect to the database and truncates cs_temp_association.
D. Retrieve relations from the SpectroSERVER.
E. Loop through the relations:
I. Retrieve all associations involved with the current relation
a. Loop through the retrieved associations
1. Add each association to a list
ii. Ifthere are greater than or equal to 1000 associations in the list
then
1. Insert all the associations into cs_temp_association in
one insert
2. Empty out the association list

F.. Insert the remaining associations into cs_temp_association in one insert

21

20

25

30

WO 00/13112 PCT/US99/19963

G. In a database update, terminate all associations in cs_association that are now i)T’lt of
date

H. In a database update, add all the new associations from cs_temp_assocation to
cs_association performing the model mapping in the update.

1. Disconnect from the SpectroSERVER.
8. Topology Import Flow (Topology Agent)

A. Perform software/schema version check.
I1. Connect to the data warehouse database.
H1. Issue a query to the data warehouse database to retrieve the schema version.
1V. Disconnect from the data warehouse database.
B. Retrieve policy from the data warehouse database:
1. Connects to the data warehouse database.
il. A query is issued to the database (cs_agent_name) to retrieve the import agent
data.
HI. A query is issued to the data warehouse database (cs_export_policy) to
retrieve the policy specified on the command line.
1V. The tables are joined internally to create a final detailed policy.
C. Executes policy:
1. Initialization:
a. Connect and sends a log message to IoServi-ce indicating that the
import has started:
i. IoService performs a single insert into cs_log_message.
b. Connect to the database.
c. An update is issued to the database (cs_export_policy) to set the status
field of the import to "running".
d. Disconnect from the data Warehoﬁse database.
e. Connect to the data warehouse database.
f. An update is issued to the database (cs_export_policy) to set the
start_time of the import to the current time. |
g. Disconnect from the data warehouse database.
II. Run pre-scripts:

a. Connect to the data warehouse database 203.

22

20

25

30

WO 00/13112 PCT/US99/19963

b. Runa topo_ﬁll_all_tables.sql script which fills tables with topo'lggy
data:

i. Open the script file.
ii. Read a statement.
iii. Send the statement to the database to be executed.
iv. Loop until no more statements remain.
c¢. Bind and execute the CS_SDW_UPDTOPO stored procedure.
I11. Run base import:
a. Perform device import:
i. Issue a query to retrieve a list of models from cs_device.
ii. Create a unique temporary table name using the current time.
ii. Register the temp table name by inserting it into cs_temp_table.
iv. Issue a create table command to the database to create the temp
table.
v. lIssue a create index command to the database to create indexes
on the temp table.
vi. Connect to the database (SSModelMap).
vii. Loop through the list of models.
1. Execute the CS_SS MAP_GET_SS MODEL stored
procedure to convert the SDW model handle to a
"SPECTRUM model handle.
2. If the landscape is different than the one already
connected to then:
B Disconnect from the old landscape.
B Connect to the new landscape using
synchronous ‘SSAPL
B Retrieve the VL Map from the SpectroServer to
obtain the landscape handle of the server..
3. Requests the' following attributes from the
SpectroServer: Internal_Link _Status (0x10F1B),
RPAdminStatus (Ox] 1AC9), RPOperStatus (0x1]AC8).
viii. Disconnect from the current landscape.

ix. Insert the retrieved attributes into the temp table in one insert.

23

10

20

25

30

WO 00713112

PCT/US99/19963

X. Run the topo_update_port_attribs.sgl script:

1.
2.
3.

4.

Open the script file.
Read a statement.
Send the statement to Oracle to be executed.

Loop until no more statements remain.

xi. Send a drop table command to the database to drop the temp

table.

xii. Unregister the temp table by deleting the entry in

cs_temp_table.

b. Perform interface import:

i
I
iii.

v.

Vi.

vii.

Issue a query to retrieve a list of models from cs_interface.

Create a unique temporary table name using the current time.

Register the temp table name by inserting it into cs_temp_table.

Issue a create table command to the database to create the temp

table.

Issue a create index command to the database to create indexes

on the temp table.

Connect to the database (SSModelMap).

Loop through the list of models.

1.

(V3]

Execute the CS_SS_MAP_GET_SS_MODEL stored

procedure to convert the SDW model handleto a -

- SPECTRUM model handle.

If the landscape is different than the one already
connected to then:

B Disconnect from the old landscape.

B Connect to the new landscape using

- synchronous SSAPI.

M Retrieve the VL. Map from the SpectroServer to

obtain the landscape handle of the server.

: Réquest the following attributes from the

SpectroSERVER: iﬂndex.(Oxl 1348), ifDescr
(0x1134B), Message_Size (0x1 197B), ifType

(0x1134C), ifSpeed (0x11EE3), ifAdminStatus

24

15

20

25

WO 00/13112

viii.

PCT/US99/19963

(0x10E3F), ifOperStatus (0x10E40), ip_address -
(Ox10E43).

Disconnect from the current landscape.

ix. Insert the retrieved attributes into the temp table in one insert.

X. Run the topo_update_if_attribs.sql script.

1.
2.
3.
4.

Open the script file.
Read a statement.
Send the statement to Oracle to be executed.

Loop until no more statements remain.

xi. Send a drop table command to the database to drop the temp

table.

xii. Unregister the temp table by deleting the entry in

cs_temp_table.

c. Perform port import:

i.

it

Issue a query to retrieve a list of models from cs: port.

Create a unique temporary table name using the current

time.

1ii.

Register the temp table name by inserting it into

cs_temp table.

v.

Issue a create table command to the database to create

the temp table.

V.

Issue a create index command to the database to create

indexes on the temp table.

Vi.

Vil..

Connect to the database (SSModelMap).
Loop through the list of models.

. Execute the CS_SS_MAP_GET_SS_MODEL stored

procedure to convert the SDW model handle to a
SPECTRUM model handle.
If the landscape is different than the one already
connected to then:
= Diséoﬁnect from the old landscape.
. M Connect to the new landscape using

synchronous SSAPI.

25

20 .

25

30

WO 00/13112 ' PCTRUS99/19963

B Retrieve the VL Map from the SpectroSe;ver to
obtain the landscape handle of the server.
3. Request the following attributes from the
SpectroServer: Internal Link_Status (0x10F1B),
RPAdminStatus (0x11AC9), RPOperStatus (0x11AC8).

viii. Disconnects from the current landscape.

ix. Insert the retrieved attributes into the temp table in one
insert.
X. Run the topo_update_port_attribs.sql script.

1. Open the script file.

2. Read a statement.

LI

Send the statement to Oracle to be executed.

4. Loop until no more statements remain.
Xi. Send a drop table command to the database to drop the
temp table. .

xii. Unregister the temp table by deleting the entry in
cs_temp_table.
IV. Run post-scripts .
‘a. Bind and execute the CS_SDW_SPECTRUM_GROUPS stored
procedure. |
b. Bind and execute the CS_SDW_RMON_GROUPS stored procedure.
D. Clean up
1. Connect to the data warehouse database.
11. Issued an update to the database (cs_export_policy) to set the status ﬁe]d of
the import t0 "sleeping”.
I1I. Disconnect from the data warehouse database.
1V. Connect to the data warehouse database.
_ V. Issued an update to the database (cs_export: policy) to set the cutoff_time of
the import to the current time.
VI. Disconnect from the database.
VII. Connect to the database.
V1. Issue an update issued to the database (cs_export _policy) to set the

end_time of the import to the current time.

26

20

‘30

WO 00713112 PCT/US99/19963

IX. Disconnect from the database.
X. The agent connects and sends a’log messagc to loService indicating that the
import has completed: |
a. loService performs a single inseﬁ into cs_log_message.
XI. Disconnect from the database (PolicyMgr level connection).
XII. Disconnect from the database (TopoAgent level connection).
Below list pseudocode for importing events data from IACS agent 721:
9. IACSAgent Logic Flow (Import of Events Data)
Section: main

Entry point

SDW DATABASE: check software, database schema versions;

-if (version mismatch)

{

exit with error;

1
)

define policy for import;
processPolicy(policy);

exit;

Section: processPolicy(policy)

Process an events import policy

SDW DATABASE: update status in CS_Export_Policy to RUNNING;

- SDW DATABASE: write "Import Policy Triggered” log message

SDW DATABASE: connect to SDW database

SDW DATABASE: check for initial run condition

SDW DATABASE: disconnect from SDW database

if (this 1s an initial import run)

{

SDW DATABASE: drop all indexes (4) from CS_Event;

)
performlmport(policy);

27

25

30

WO 00/13112 . PCT/US99/19963

if (this is an initial import run)

{

SDW DATABASE: create all indexes for CS_Event;

} |

SDW DATABASE: update status in CS_Export -Policy to SLEEPING or ERROR;
SDW DATABASE: write "Import Policy Completed" log message

exit;

Section: performImport(policy)

Perform the import

SDW DATABASE: update start time in CS_Export_Policy to current time;
SPECTRUM: connect to SpectroSERVER, using machine/port defined with policy;
get landscape_handle from SpectroSERVER;

disconnect from SpectroSERVER;

determine time range for import;

for (each period (1 day or shdrter) in time range)

{

start = start time of period;

end = end time of period; . _

importEvents(landscape_handle, start, end);

SDW DATABASE: update cutoff time in CS_Export_Policy = end;

)

exit;

Section: importEvents(landscape handle, staft, end)

Import even,ts.from landscape for given period

SPECTRUM: get events from landscape for time period (start, end), using
the form of CsDataDispatcherCollator::request_events() which requests

all events for all models in the given landscape. Results are written into

~ temp files stored in the working directory ./;

SDW DATABASE: connect to SDW database (connection for import operations)

28

15

20 -

25

WO 00/13112 . PCT/US99/19963

for (each group of 1000 or less events extracted from temp files)

{

event_list = list of events;
SDW DATABASE: loadDatabase(event_list); -- Insert events into database
}

if (any events remain in event_list)

{ ,
SDW DATABASE: loédDatabase(evem_}ist); -- Insert events into database

}
SDW DATABASE: disconnect from SDW database

exit;

Section: loadDatabase(event_list)

Write events data to SDW database

initialize array of event rows to be inserted into database;

for (each event in event_list)

{

s'pectrum_rﬁodel_handle = Spectrum model handle from event data;
time_stamp = time stamp from event data;

SDW DATABASE: model_handle = mapToSDWModel(spectrum_model_handle, .
time_stamp);

-- (map SPECTRUM model to internal SDW model)

construct new event row, add to event array;

}

SDW DATABASE: insert array into event table CS_Event, using
Oracle array inseﬁ (one insert command sent with array of row values,
normally of size 1000);

SDW-DATABASE: commit the transaction;

exit;

Section: mapToSDWModel(spectrum_model_handle, time_stamp)

29

20

25

30

WO 00/13112 PCT/US99/19963

Map spectrum_model_handle to internal SDW model_handle

if (spectrum_model_handle = last one encountered)

{

model_handle = last one determined;

3

else

{

SDW DATABASE: lock CS_Model to all other updates;

SDW DATABASE: search for_CS_Model entry with given Spectrum model handle,
either active, or inactive with time_stamp within model start/end times

if (Spectrum model matches an inactive entry in SDW)

{

model is inactive - model_handle = existing SDW model key

}

else -- Spectrum model not found in SDW, or an active match is found

{ .

SPECTRUM: get model data from SpectroSERVER via a SSAPI call;
if (model is in SDW and is active)

{

if (model is not in SPECTRUM or

(mdde] is in SPECTRUM but differs from that in SDW,

i.e. different model type or creation time))

-

SDW DATABASE: deactivate model in SDW

(i.e. update end_time_key = now),

}

}

if (no active model in SDW and present in SPECTRUM)

{
SDW DATABASE: create model in SDW

(i.e. insert new CS_Model row with new SDW model key
and info just read via SSAPI);

30

20

25

30

WO 00/13112 PCT/US99/19963

model_handle = newly created SDW model key;

}

}

SDW DATABASE: unlock CS_Model,
)

return model_handle;

exit;

10. JACSAgent Logic Flow (Statistics Import)
Section: main

Entry point

SDW DATABASE: check software, database schema versions;

if (version mismatch)

{

exit with error;

} -

define policy for import;
processPolicy(policy);

. exit;

Section: processPolicy(policy)

Process a statistics import policy

SDW DATABASE: update status in CS_Export_Policy to RUNNING;
SDW DATABASE: write "Import Policy Triggered" log message
SDW DATABASE: connect to SDW database

SDW DATABASE: check for initial run condition

SDW DATABASE: disconnect from SDW database

if (this is an initial import run)

{ _

SDW DATABASE: drop time key index for CS_Statistic;

}

31

WO 00/13112 PCT/US99/19963

15

20

25

30

performImport(policy);
if (this is an initial import run)

{

SDW DATABASE: create time key index for CS_Statistic;

}
SDW DATABASE: update status in CS_Export_Policy to SLEEPING or ERROR;
SDW DATABASE: write "Import Policy Completed" log message

exit;

Section: performImport(policy)

Perform the import

SDW DATABASE: update start time in CS_Export_Policy to current time;
SPECTRUM: connect to SpectroSERVER, using machine/port defined with policy:
get landscape_handle from SpectroSERVER;

disconnect from SpectroSERVER;

SDW DATABASE: connect to SDW détabase;

SDW DATABASE: get aggregation period (normally 3600) from CS_Parameter;
SDW DATABASE: disconnect from SDW database;

determine time range for import;

for (each period (1 day or shorter) in time range)

{ .

start = start time of period,

end = end time of period;

importStatistics(landscape_handle, start, end);

SDW DATABASE: update cutoff time in CS_Export_Policy = end;

-}

exit;

Section: importStatistics(landscape_handle, start, end)

Import statistics from landscape for given period

32

15

20

25

WO 00/13112 PCT/US99/19963

SPECTRUM: get compressed statistics for all logged attributes in landscape,
for time period (start, end), using the form of |
CsDataDispatcherCollator::request_data() which requests all statistics

for all models in a given landscape logged within the given time range.

Results are written into temp files stored in the working directory ./;

SDW DATABASE: connect to SDW database (connection for import operations)
for (each model/attribute returned from DAS) |

{

spectrum_model_handle = Spectrum model handle from returned data;
time_stamp = first time value from >retumed data;

SDW DATABASE: model_handle = mapToSDWModel(spectrum_model handle,
time_stamp); |

- (map SPECTRUM model to internal SDW model)

data_list = uncompressed time/value list for model/attribute;

prepare aggregation_list: scan data_list, calculating base level (1 hour)

statistic entries for insertion into database; »

if (number-of aggregation_list entries >= 1000}

{

SDW DATABASE: loadDatabase(aggregation_list); -- Transfer to database

}

1
s

if (aggregation_list not empty)

{ |

SDW DATABASE: loadDatabase(aggregation_list); -- Transfer to database
}

SDW DATABASE: disconnect from SDW database

exit;

Section: mapToSDWModel(spectrum_model_handle, time_stamp)

Map spectrum_model_handle to internal SDW modél_handle

33

20

25

30

WO 00/13112 ' PCT/US99/19963

if (spectrum_mode]_handle = last one encountered)

{

model_hand‘le = last one determined,

}

else

{
SDW DATABASE: lock CS_Model to all other updates;

SDW DATABASE: search for CS_Model entry with given Spectrum model handle,
either active, or inactive with time_stamp within model start/end times

if (Spectrum model matches an inactive entry in SDW)
(

model is nactive - medel_handle = existing SDW model key

1
3
else -- Spectrum model not found in SDW, or an active match is found

{

SPECTRUM: get model data from SpectroSERVER via a SSAPI call;

if (model is in SDW and is active)

A

if (model is not in SPECTRUM or
(model is i SPECTRUM but differs from that in SDW,
i.e. different model type or creation time))

¥
3

SDW DATABASE: deactivate model in SDW
(i.e. update end time_key = now);
| . ,

}
if (no active model in SDW and present in SPECTRUM)

{
SDW DATABASE: create model in SDW

(i.e. insert new CS_Model row with new SDW fno_de] kéy
and info just read via SSAPY); '

34

20

25

WO 00/13112 PCT/US99/19963

model_handle = newly created SDW model key;

}

}

SDW DATABASE: unlock CS_Model;
}

return mode]_handle;

exit;

Section: loadDatabase(aggregation_lis_t)

Write statistics data to SDW database

‘Prepare array of CS_Statistic rows from aggregation_list;

SDW DATABASE: insert array into work table CS_Statistic_T0. using

Oracle array insert (one insert command sent with array of row values,

normally of size 1000);

SDW DATABASE: call stored procedure CS_SDW_UPDATE_STAT, which proéesses
the data just inserted intp the work table:

start a database transaction;

delete any rows from the work table which already exist in CS_ Statistic;

insert all rows from work table into CS_ Statistic;

call stored procedure CS_SDW_UPDATE_STAT_AGG, which updates curréntly
defined aggregation tables with data from work table;

commit the transaction;

‘exit;

Figure 9 is a reptesentation of a graphical user interface for managing policies. In
particular, ngure 9 shows a user interface screen 901 fbr_allowing a network administrator to
create policies for importing data into data warehouse 203. Interface 901 allows an
administrator to specify a data source 902, which, in accordance with one embodiment, is a

network management server such as a SpectroSERVER network management system.

 Interface 901 also allows an administrator to specify a machine name 903 which identifies the

network managcmént system’s logical name. Also,a timezone 904 for the management
server may be specified such that data may be collected at a specified time at the management

system. Machine port 905 allows the administrator to specify a port of the management

35

10

20

25

30

WO 00713112 PCT/US99/19963

server through which data will be transmitted. Data type 906 field allows an administgtor to
specify what types of data will be collected from the rhanagement system. Interface 901 also
allows an administrator to specify a frequency schedule at which data will be transferred to
data warehouse 203. By selecting button 909, an administrator may save the policy
information in database policies 209 (see Figure 2).

Figure 10 is a representation of a graphical user interface for listing information
regarding created policies. Specifically, Figure 10 shows a user interface screen 1001 that
accepts input and displays information to an administrator regarding policies in database
policies 209. Warehouse location 1002 indicates for which data warehouse the created
policies apply. Data source 1003 indicates the data source from which the data is obtained.
Data type 1004 indicates a type of data that is collected from the management system.
Machine 1005 indicates a machine name 903 which identifies the network management
system’s logical name. Last status 1006 indicates the last status of a policy that was executed

by data management system 210. Status 1006 may indicate, for example. whether the

-execution was successful, is currently in progress, or is currently in an idle or sleep mode.

Enabled status 1007 indicates whether the policy is enabled (policies can be enabled or

- disabled by the administrator). Field 1008 indicates when the next execution of the policy

"~ will occur.

Figure 11 is a representation of a graphical user interface for listing history
information regarding created policies. In particular, interface 1101 shows a policy history to
an administrator. History information may be stored by data management system.210 in its
own database or within data warehouse 203. Field 1102 shows the last status of a policy
executién, whereby system 210 could indicate whether or not the execution of the policy was
successful or an error occurred. Field 1103 indicates the last failure of the policy execution.
Field 1104 indicates the last time the policy successfully completed an execution. Interface
1101 lists, in a table or other type of indication to the user, a list of history items
corresponding to actions regarding a particular policy. Field time 1105 indicates the time at
_which the history entry occurred. Message type 1106 indicates the type of message entered
in the history list. Message type 1106 may indicate whether the message was a fatal error,
merely informational, or other information associated with a corresponding list entry.
Message field 1107 indicates an action performed by system 210, an error encountered, or

other information related to a history list entry.

36

10

15

20

25

30-

WO 00/13112 PCT/US99/19963

Figure 12 is a representation of a graphical user interface 120] for configuring network
monitoring. For example, a graphical user interface may be provided to an administrator for
configuring network monitoring on one or more management systems such as a SecureFast
VLAN or Flow Admission Server (FAS), and SecureFast Virtual Remote Access (VRA) to
provide information for an application 202 such as capacity planning and monitoring. View 1202
shows the landscapes available to be monitored. Selected field 1203 indicates one or more
landscapes that may be selected. Handle 1204 indicates a database handle of the landscape such
that the landscape may be located in data warehouse 203. Name field 1205 indicates a logical
name of a landscape. Dfscnpnon field 1206 indicates a description of the landscape. The

description may describe attributes of the landscape network, such as the size, numbcr of users,

types of network media, and the like.

Figure 13 is a representation of a graphical user interface for confi guring a network
accounting report. As discussed above, an administrator may wish to obtain graphical reports
regarding a high-level application, such as network accounting or capacity management. By way
of example, interface 1301 is presented to an administrator for defining a network accounting
report. Data warehouse 203 is accessed based upon report parameters supplied in interface 301..
Accounting may be performed based on a specified time period, data sources, group of sources,
or parameters such as cost or bytes. A graphical or textual type report may be produced based on
the report parameters in area 1305. v

Figure 14 is a representation of a graphical user interface for configuring a network link
report. As discussed above, information stored from various data sources may be accessed by an
application 202. For example, information may be collected from multiple network domains by
multiple network management systems. This information may be consolidated or combined in
data warehouse 203. Interface 40] accepts parameters from a user to present to the user
utilization statistics based on links in the network. In particular, system 203 may show a graph
1402 to an administrator to show the percent utilization for links of systems based on a specified
time period. Also, the graph 1402 may be based on the nuinbe’r of bﬁes, packets, or other
parameter used to show capacity of a communication link.

The graphical user interfaces described above are merely examples of presenting data to
an administrator, and the invention is not limited té the embodiments described herein. Other
interfaces may be used, including terminal-based interfaces, X-window interfaces, those available
through operating systems such as Windows 98, Windows 2000, and Windows NT, and the like.

37

RECTIFIED SHEET (RULE 91)
ISA/EP

WO 00713112 PCT/US99/19963

While various embodiments of the present invention have been described abov;: it
should be understood that they have been presented by way of example only, and not
limitation. Thus, the breadth and scope of the present invention are not limited by any of the
above exemplary embodiments, but are defined only in accordance with the following claims

and their equivalents.

38

20

25

30

WO 00/13112 PCT/US99/19963

1. A system for managing information, the system comprising:

a data manager that accepts data from a plurality of management systems and
processes and stores the data in a data warehouse, the data manager comprising:

an agent configured to accept information from the plurality of management systems
and which maps the aécepted information into database fields of the data warehouse; and

a database accessor that stores the accepted information in the data warehouse.

2. The system according to claim 1, wherein the agent deletes duplicate data received
from more than one source.
3. The system according to claim 1, wherein at least one of the plurality of management

systems 1s a network management system.

4, The system according to claim I, wherein the database accessor utilizes a standard

database interface to one or more proprietary data warehouses.

5. The system according to claim I, wherein the agent is a push agent configured to push

data to the database accessor at a specified interval.

6. The system according to claim 1, wherein the agent is a polling agent configured to
poll one or more systems for obtaining management data and provides the management data

to the database accessor.

7. The system according to claim 6, wherein the one or more systems are network

management systems.

8. The system according to claim 7, wherein the network management systems store

different types of management information.

9. A method of managing information, the method comprising steps of:

accepting data from a plurality of management systems;

39

10

20

25

WO 00/13112 PCT/US99/19963

accepting information from the plurality of management systems and mapping-i—}l_e
accepted information into database fields of the data warehouse; and

storing the accepted information in the data warehouse.

10. The method according to claim 9, further comprising a step of deleting duplicate data

réceived from more than one management system.

11. The method according to claim 9, wherein at least one of the plurality of management

systems is a network management system.

12. The method according to claim 9, wherein the database includes one or more

- proprietary data warehouses and the method further comprises a step of using a standard

database interface to access the one or more proprietary data warehouses.

13. The method according to claim 9, further comprising a step of pushing data for |

storage in the data warehouse at a specified interval.

14. The method according to claim 9, further comprising a step of polling at least one of
the plurality of management systems to obtain management information and providing the

management information for storage in the data warehouse.

15. The method according to claim 14, wherein the one or more systems are network

management systems.

16. The method according to claim 15, wherein the network management systems store

different types of management information.-

17. A computer program product comprising a computer-readable medium having
computer logic recorded thereon for enabling a processor in a computer system to manage
infomﬁation, the computer program being adapted to cause the computer system to perform
the steps of: V

accepting information from a plurality of management systems;

40

WO 00/13112 PCT. /US99/1__9963

accepting information from the plurality of management systems and mapping the
accepted information into database fields of the data warchouse; and

storing the accepted information in the data warehouse.

41

PCT/US99/19963

WO 00/13112

[9Ol

S30I1A3Q
AVdSIa AHOWIN ¥0SS300¥4d | Ihatho
zi—" 01— so1—" g01—"
| ,
[
E\
M SNg ¥3LNdWOD
i 30IA3A S301A30 $30IA30a
. NOILYOINNWNOD 3JOVHOLS LNdNI
» WALSAS ¥3LNWOD 1~ 601—" Joi—
104 _ _
0! | |
v_mo;Ezl_\\
ALLLN3 ALILN3 W3LSAS WILSAS N
QIDYNYI Q3OVNYN LININIOVNVA LNINIDOVNYN
| | | W3LSAS
acor—" veor—" gzo1—" vzoi —

SUBSTITUTE SHEET (RULE 26)

PCT/US99/19963

2/14

WO 00/13112

¢ 9l

mmow/ %ow// mmgm/ §ow./
308N0S | . . . 304N0S | 08N0S | . . . | 30un0S
vivdad vivd vivd vivd
gig— P .

ISNOJS3Y 1S3ND3Y \; oie

r v D WALSAS |

“ - LN39V LN3OV ININ3OVNVA viva |

“ 902 ——— ONIMTI0d GO0Z ~——ol HSNd "

m 602 m

[S310110d _

“ »0Z 4OSS300V 3Isvavivd ISvav1iva “

! . _

L J

ASNOH3YYM Vviva
£0¢

202 — NOILYOIddV

SUBSTITUTE SHEET (RULE 26)

PCT/US99/19963

3/14

WO 00/13112

508 —HS0E —9§0F \\Ikﬁoh —3508 —0S0E \\IQMOM ~—850¢ Y508
ALILN3 ALILN3 ALILN3 ALILNZ ALILN3 ALILN3 ALILNZ ALILN3 ALILN3
AJOMLIN] [MHOMLIN] [MHOMLIN| [MHOMLIN| |MUOMLIN| - |MHOMLIN| [MHOMLIN| [MYOMLAN| - IMYOMLIN
N3LSAS W3LSAS | .Euhm>m, W3LSAS
LNIWIOVNVYIN LNIWIOVNVIA LINIWIOVNVYNA LNINIOVNVI

_ JW/hummwmw.NWAwnmnmnnvxw Neos “zog 08
i . , N3LSAS 1

|
“ 1N39V INIWIOVYNYAW Viva |
| 90z——{ ONITOd | goz ﬁr/;on
| |
_ _ S3191N0d N
ey ¥0SSID0V 3SVEvLva 3SVavLYQ i
IS SO]
ISNOHIYVYM VLva
£02—
02— NOLLYOddY

SUBSTITUTE SHEET (RULE 26)

WO 00/13112 PCT/US99/19963

4/14

DATA USER — 402

1403
INTERFACE ||
LAYER
404
BUSINESS —
OBUJECT -]
LAYER
DATABASE — 405
ACCESS o
LAYER
406
FIG 4 | PHYSICAL T
. | DATABASE -
407
'DATABASE - —
ACCESS -
LAYER
BUSINESS | 408
OBJECT |
LAYER—EXPORT |
409
INTERFACE 1
LAYER '
410

DATA PROVIDER

SUBSTITUTE SHEET (RULE 26)

WO 00/13112

/-502

5/14

501
/

PCT/US99/19963

BUSINESS
OBJECTS

,—503 DATABASE

SET ATTRIBUTES

ACCESS
OBJECTS

SET TABLES

504

SET CLAUSES

505

SUBMIT QUERY

506

SUBMIT PROCEDURE

507

203
I

DATA
WAREHOUSE

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 00/13112

PCT/US99/19963

6/14

Mnm\\\N

HHOMLIN
NOILVYIINNWNOD

609 r—————"—<——= St T B =
| /4/ ¥OLVT1109 m m aves L;|\\wkm
091 | /¥3HoLvdSIa || | I
I 103rg0 Ss300v| ! || 103r80 SS300V ||
_ Isvaviva |1 1| 3svaviva {19
| [TIN3ov SiNaAZ |1 | LN39V T
£09
T aNv SOUSILVLS| ! | J3qom [—019
| | | j
_ I i HIOVNYI
i VY09 B V8400 | .
rlMM\ lllllllll i R T —_— N N~—7?tl9
QINMVJS
103r80 | gpg 103r80 | 409 103r80 |
30V 443LNI 30V 4Y43LNI T I
LN3OV LN3OV LN3OV
ONTI0d | gooz | ONTIOd | yopz | NVIA
$103r80 co9
109— SS300V 3SVEvLva

ASNOHIYVM VIVQ

£0c

SUBSTITUTE SHEET (RULE 26)

a . 2qo.d ~ , .
KL 19bouoiy| | ¥3ANISOI00dS :
2. : . AIOMISN _ <—— 5901005 D}D(]
s L Old o, inows| | W WNHLO3dS
2 | N— IdVSS €14
G dINNS / sos- g $0/ | N\
sGlad}
o\ _&<mw uooooou
jusby jusby juaby || yusby _ . L 60/
36ung kporodoy || sovi J|lavss| [N | | o™
< $ZL” wvw. 9eMm]| dLiH
< e Somods 122 (Me1n0ino) ——
~ J9AI3S Sumpds 0q40) ucmmowo - 01/
0£L J0S SW | zomsssiiodu) 61/ 1 ‘oquony [
19AIBS 8i£~ ©qio] | 7Y) Joquop
omumwm.m__o; < \\ﬁ payosAaliod | 1adaaxe1p9|. «
LiL — . 4 | sosmoug .
ol ualy < (" evamo ooy — | L 2% o
o L (" somiaso0l | senses 5 90/
;Dm F - / UDLOO s00eee e OH.UO <..—. ’ IUD.._O.O g
[] [] EO“ w
) ¥4 . . \ﬁ :
s308(q0 sGH8dy | CIL7 woisk , Jasmoig
= mum000< H oo ﬁ“@ﬂmww@ $NN\n seee o.u Lm\wgomw qsm
2 asoqoypg| | PA4OD woyshs oM |
S £0£™ >, N juswaboubyy D}OQ ~~10/ _
< 92/ (A4 : _ \
g _ Y 2oz

SUBSTITUTE SHEET (RULE 26)

WO 00/13112

PROCESS FOR
IMPORTING
INFORMATION
800

FIG. 8

PCT/US99/19963

8/14

801 .
(BEGIN >

——802

VERIFY DATABASE
INFORMATION

803

SPAWN AGENT
PROCESS

CONSTRUCT LIST
OF POLICIES ,
TO BE EXECUTED

——805

QUERY DATABASE
FOR DATA SOURCE
INFORMATION

_——806

QUERY DATABASE
FOR POLICIES
SPECIFIED BY LIST

y P 807

CREATE FINAL
LIST OF POLICIES
TO BE EXECUTED

| _—808

EXECUTE
- POLICIES

809
END

SUBSTITUTE SHEET (RULE 26)

WO 00/13112

902

903

PCT/US99/19963

|®tiNetscapeZ—7[SDW policy Creation]//////77 7 =I0] X]

File Edit View Go Bookmarks Options Directory Window Help

e || o= ||) Clw [l &) &y 6
Back || forward || Home Reload}| Images}| Open{|Print {|Find

O

 Stop

ﬁ Location:|

| What's New? || What's Cool?|| Destinations|| Net Search||People]| Software]

4 N

Spectrum Data Wareh‘ouse: Policy Creation

_ Warehouse Location: _
ata Source: [SpectroSERVER]+]

904\bﬁcchine Name: |]

905 achine Timezone: Eastern Stondard Time

906
907

908;

909

:Mochine Port: | |
Data Type: [Statistics [+]

~
Schedule:

™ :
Frequency: @ daily
O once a week on [Sundays |+
at [12:00} (hh:mm) [GMT |+]

Next Scheduled Time: Sat Nov 15, 12: 00GMT 1997
The first time, get @ the previous day

Ofrom[] (mm/dd/yyyy)

B

| @ |[Applet:EditPoiApplet running | _ I

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 00/13112 PCT/US99/19963

BENetscape/—ZLSDW Policy Listl// 7777777 2=0 X]
File Edit View Go Bookmarks Options Directory Window Help

o || o= = || 2| &l o O
‘Back {| Forward | | Home Reload}| Images|| Opent|Print ||Find| | Stop

1 Location: - :]

[what's New? [What's Cool?][Destinations}] Net Search||Peoplel| Software]

-
Spectrum Data Warehouse: Policy List |
1003 1002 1004 1005 1006
@;rehou e Iocqtion:@jm / / /7007 7008\‘

Data Source |Data Type |Machine [Lost Status |Enabled? [Next Kickoff

NN 778 askies 77 o 868 77, saa ijmai |
SpectroSERVER Model Info Sleeping yes 1345 o 113297 on GO
VLAN Model Info

Sleeping yes 1848 on 11151967 41
SpectroSERVER Statistics Sléeping yes 213 on 11/14/1907 QT | -

<]] |»
View Log]|Create Policy||Modify Policy}|Delete Policy || Disable [| Copy Policy}|.

Display dates as ® GMT Qlocal to machine

) Latest as of: Fri Nov 14 14:04 1997 [Refresh

EJ I [=7)

FIG. 10

SUBSTITUTE SHEET (RULE 26)

WO 00/13112 PCT/US99/19963

BtiNetscapeZ—[SDW Policy Historyl////7//777777/7/72 =101 X]

file Edt View Go Bookmarks Options Directory Window Help

=l OOl &S] | O

Back || Forward || Home Reload}| Images|| Open|{Print ||Find{ |Stop

Location:] ’ ' =

| [Whot's New? || What's Cool?}| Destinations|| Net Seorch”Péople” Softwor;l

Spectrum Data Warehouse: Policy History
Warehouse location:

VLAN Statistics from:
1102 1103 ,1104

Last stotus:) FATAL : |

Last fojlure:‘ Sun Oct 05 14:21 GMT 1997

Lost completion: Sun Sep 28 18:21 GMT 1997/”07
7

Time 1105 Message |Message.
T Type 1106
Fri Oct 03 09:32 GMT 1997 INFO Export Policy Triggered
Fri Oct 03 09:45 GMT 1997 INFO Export Policy Triggered
(I Fri Oct 03 09:55 GMT 1997 INFO Export Policy Triggered
Fri Oct 03 10:16 GMT 1997 INFO Export Policy Completed Flapsed Time—1292
Fri Oct 03 10:23 GMT 1997 = INFO Export Policy Triggered
Fri Oct 03 10:35 GMT 1997 INFO Export Policy Triggered -
Sun Oct 05 14:21 GMT 1997 FATAL Cannot spawn process

Display datés as @ GMT Olocal to machine
Latest as of: Fri Nov 14 14:14 1997 Refresh

[occ]

ALE#@ | ' . =R

FIG. 11

SUBSTITUTE SHEET (RULE 26)

WO 00/13112 PCT/US99/19963

(3¢ Confiquration for Securef ast Capacity Monttoring — Netscope 2222/ 0= 00 X |
File Edit View Go Communicator Help ‘
7D 7 7|

SecureFast Capacity Monitoring: Configuration =

Use this page to confiqure the fist of landscapes you are interested i This wil offect Topology View, Device
Summary and Device Query.screens.

Current User Profile: use

1202 1204
ya /T

Landscapes User/Settings Servo Info 1206

Selected? Handle Name . ||[Description|”

. \
:g 1203 21495808(1480000) northwest 7205

no 5242880(500000) InterOp—1 Simulated Network 7 Silches (mesh), 56 Users, 75 g
yes 77/, 6291456(600000f AnterOp~2 7/Smioted Network: 12 Switches (ring), 264 Users, 90
no 7340032(700000) InterOp—3 - Simulated Network: 13 Switches (star), 156 Users, 304

1L

Select Highlighted Landscapes

'Welcome Configuration Topology View Device Summofy Device Query Help

oy AppletCOM.ciron product VianAdvApps. CapMon.applets. Config rming E={ 3¢ [1 T2 @

FIG. 12

SUBSTITUTE SHEET (RULE 26)

WO 00/13112

PCT/US99/19963
13/14 o
1301 |
R Network Accounting Report Selection Screen 2— Netscape 7227/ A=I10| X |
File Edit View Go Communicator Help
Back Forward Reload Hme Search Guide Print Security Stop N
Network Accounting =
Define Report
/1302
Time Iiunge: From day 1 to end of month
Data Selection: Defined on this page
Specify. whot data in your time 2. Select data to report Z.J_O_‘Z
ronge you went to show in your
report. In the first section you
specify which data- sources you O Show dll sources
‘wont to report on. You can 1304
show every source in the time |1 {1 @ Show only: E—
range, or you can pick ¢ .
predefined set of sources, or © The predefned graup: (Nashua i
you can specify a comme O These sources: web—servert, &
seporated list of sources. In web—server2, a
the second section you can novelll, L/
fimit the sources shown to only =
the ones that cost the most. in W72 7070
the lost section you con request - :
o-groph and specify which kind Show only the [10 Jmost expensive sources selected above
of dato york: want to show in {11 =
your " graph. Sy
Press Generate Report to- O Show text only
create o report with the cument _
i ronge md et tectn, @Stgwc;t:;(t and graph. On the graph show:
Press Change Time Range to) 1305
| change the time range of OBytes in —
which dota is presented in your O Bytes out
1} et O Total bytes
| | Generate Report | [Change Time -VRan_ggl |-
R Document Done =& O g P | %

FIG. 13

SUBSTITUTE SHEET (RULE 26)

WO 00/13112

PCT/US99/19963
14/14
/—7407
ink Report for SecureFast ‘Capacity Monitoring - Netscape - 0] X
File Edit View Go Communicator Help
S g R E—
Securefast Capacity Monitoring: Link Report
Selected -links from previous screen:
Graphs of: | Utilization |+ fit Y axi Done gathering data
p il v Ofit Y axis one g g 1402

Historical | Trends | Average Day | Average Week | Critical| Overal Average
Average Day by Hour: Percent Utilization
1

100.0+ [11: 58]

90.0- |

80.07 ®Link_12-1
28’82 ' [74.67) eLink_10-11
50.0- 13.12) eLink_11-12
40.0-

30.04 ' |

20.0- —

o0 e I =

< - ™ powE

N TR P N T T NN
000 200 400 600 800- 1000 1200 1400 1600 1200 2000 2200

Welcome Configuration Topology View Device Summary Device Query Help

0P P %

[f Applet.GraphDewDisp.running

[l

FIG. 14

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Inte ‘ional Appfication No

PCT/US 99/19963

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO6F17/30

According to Intermational Patent Classitication {IPC) or to both national dlassification and IPC

8. FIELDS SEARCHED

IPC 7 GO6F '

Mimmum documentation searched (classiication system followed by classdication symbots)

Documentation searched other than minmum documentation 10 the extent that such documents are inciuded in the fields searched

Elecironic data base consulted dunng the international search (name of data base and. where practicai. search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category -

Citation of document. with indication, where appropriate. of the retevant passages

P.X BONTEMPO C ET AL:

ARCHITECTURE"

COMPUTING MACHINERY. NEW YORK,

page- 38-51 XP000791963

ISSN: 0001-0782
page 45, left-hand column, line
46, left-hand column, line 18

"THE IBM DATA WAREHOUSE

COMMUNICATIONS OF THE ASSOCIATION FOR
COMPUTING MACHINERY,US,ASSOCIATION FOR

vol. 41, no. 9, September 1998 (1998-09),

1-17

40 -page

-/--

m Further documents are listed in.the continuation of box C.

D Patent family members are listed in annex:

* Spacial categories of cited documents :
"A" document defiming the general state of tha art which is not
d to be of particular relevance

earlier document but published on or after the international
. filing date -

"L" document which may throw doubts on priority claimis) or
which is cited to establish the publication date of anolher
citation or other special reason (as specitied)

document referring to an oral disclosure, use. exhibition or
other means

“P" document published prior to the intemationa! fling date but
later than the priority date claimed

£

o

“T* later document pubtished alter the internationai filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory undartying the
invention ’

"X document of particutar relevance: the cldimed invention
cannot be considered novel or cannot be considered o
involve an inventive step when the document is taken alone

"¥* document of particular relevance; the claimad invantion
cannot be considered to invoive an inventive step when the
document is combined with one or more other such docu~
me"r‘\ls, such combination being obvious to a person skilled
‘in the an.

"&" document member of the same patent family

Date of the actual completion of the intemational search

13 January 2000

Date of maifing of the intarnational search report

19/01/2000

Name and mailing address of the ISA
Eurapean Patent Office. P.8. 5818 Patantlaan 2
NL - 2280 HV Rijswijk
Tal (+31-70) 340-2040. Tx. 31 651 eponi, .
Fax: (+31-70) 340-3016

Authorized officer

Fournier, C

Fomm PCT/ISA210 (secand sheet) (&dy 1992)

page 1 of 2

Relevant to ctaim No.

INTERNATIONAL SEARCH REPORT

inte ‘onal Application No

PCT/US 99/19963

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Catagory - | Citation of document. with indicaticn.whare appropnate. of the relevant passages

Relevant to dlaim No

X ANAND V J ET AL: "Data warehouse
4 architecture for DSS applications”
AVIS. AUSTRALIAN JOURNAL OF INFORMATION
SYSTEMS, AU, WOLLONGONG,
vol. 4, no. 1, September 1996 (1996-09),
page 43-53 XP002074805

ISSN: 1039-7841
page 45, line 19 -page 46, line 1; figure
1
page 50, line 1 -page 51, line 4; figure 4

A DERBYSHIRE M H: "AN ARCHITECTURE FOR A
BUSINESS DATA WAREHOUSE"
THE ICL SYSTEMS JOURNAL,GB,INTERNATIONAL
COMPUTERS LIMITED,
vol. 11, no. 1, May 1996 (1996-05), page
23-47 XP000631249 :

ISSN: 1364-310X
page 33, paragraph 6 -page 39, paragraph 7
A CONINE R: "The data warehouse in the
telecommunications industry”
NOMS 98. 1998 IEEE NETWORK OPERATIONS AND
MANAGEMENT SYMPOSIUM. CONFERENCE
PROCEEDINGS (CAT. NO.98CH36158), NOMS 98
1998 IEEE NETWORK OPERATIONS AND
MANAGEMENT SYMPOSIUM, NEW ORLEANS, LA,

XP000799773

1998, New York, NY, USA, IEEE, USA ISBN:
0~-7803-4351-4

page 207, left-hand column, line 50
-right-hand column, line 21

USA, 15-20 FEB. 1998, pages 205-209 vol.1,

1,5.6,9
1 1

3.14.17

1,3,7

Form PCTASA/210 {continuation of second sheet) (July 1992)

page 2 of 2

This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original
documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

(] BLACK BORDERS

0] IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

(] FADED TEXT OR DRAWING

(] BLURRED OR ILLEGIBLE TEXT OR DRAWING

(J SKEWED/SLANTED IMAGES

) COLOR OR BLACK AND WHITE PHOTOGRAPHS

U GRAY SCALE DOCUMENTS

U LINES OR MARKS ON ORIGINAL DOCUMENT

0 REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

U] OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the image

problems checked, please do not report these problems to
the IFW Image Problem Mailbox.

	2004-12-08 Foreign Reference

